Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mol Biosci ; 10: 1204025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37426425

RESUMEN

Toll-like receptors of the human immune system are specialized pathogen detectors able to link innate and adaptive immune responses. TLR ligands include among others bacteria-, mycoplasma- or virus-derived compounds such as lipids, lipo- and glycoproteins and nucleic acids. Not only are genetic variations in TLR-related genes associated with the pathogenesis of allergic diseases, including asthma and allergic rhinitis, their expression also differs between allergic and non-allergic individuals. Due to a complex interplay of genes, environmental factors, and allergen sources the interpretation of TLRs involved in immunoglobulin E-mediated diseases remains challenging. Therefore, it is imperative to dissect the role of TLRs in allergies. In this review, we discuss i) the expression of TLRs in organs and cell types involved in the allergic immune response, ii) their involvement in modulating allergy-associated or -protective immune responses, and iii) how differential activation of TLRs by environmental factors, such as microbial, viral or air pollutant exposure, results in allergy development. However, we focus on iv) allergen sources interacting with TLRs, and v) how targeting TLRs could be employed in novel therapeutic strategies. Understanding the contributions of TLRs to allergy development allow the identification of knowledge gaps, provide guidance for ongoing research efforts, and built the foundation for future exploitation of TLRs in vaccine design.

3.
Nanoscale ; 15(5): 2262-2275, 2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36630186

RESUMEN

The incorporation of nanomaterials into consumer products has substantially increased in recent years, raising concerns about their safety. The inherent physicochemical properties of nanoparticles allow them to cross epithelial barriers and gain access to immunocompetent cells. Nanoparticles in cosmetic products can potentially interact with environmental allergens, forming a protein corona, and together penetrate through damaged skin. Allergen-nanoparticle interactions may influence the immune response, eventually resulting in an adverse or beneficial outcome in terms of allergic reactivity. This study determines the impact of silica nanoparticle-allergen interactions on allergic sensitization by studying the major molecular mechanisms affecting allergic responses. The major birch pollen allergen Bet v 1 was chosen as a model allergen and the birch pollen extract as a comparator. Key events in immunotoxicity including allergen uptake, processing, presentation, expression of costimulatory molecules and cytokine release were studied in human monocyte-derived dendritic cells. Using an in vivo sensitization model, murine Bet v 1-specific IgG and IgE levels were monitored. Upon the interaction of allergens with silica nanoparticles, we observed an enhanced uptake of the allergen by macropinocytosis, improved proteolytic processing, and presentation concomitant with a propensity to increase allergen-specific IgG2a and decrease IgE antibody levels. Together, these events suggest that upon nanoparticle interactions the immune response is biased towards a type 1 inflammatory profile, characterized by the upregulation of T helper 1 (Th1) cells. In conclusion, the interaction of the birch pollen allergen with silica nanoparticles will not worsen allergic sensitization, a state of type 2-inflammation, but rather seems to decrease it by skewing towards a Th1-dominated immune response.


Asunto(s)
Hipersensibilidad , Nanopartículas , Humanos , Animales , Ratones , Alérgenos/análisis , Alérgenos/química , Polen/efectos adversos , Polen/química , Antígenos de Plantas/análisis , Antígenos de Plantas/química , Células Presentadoras de Antígenos , Betula , Inmunoglobulina E/análisis
4.
Handb Exp Pharmacol ; 268: 249-264, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34196808

RESUMEN

B cells are key players in the mechanisms underlying allergic sensitization, allergic reactions, and tolerance to allergens. Allergen-specific immune responses are initiated when peptide:MHCII complexes on dendritic cells are recognized by antigen-specific receptors on T cells followed by interactions between costimulatory molecules on the surfaces of B and T cells. In the presence of IL-4, such T-B cell interactions result in clonal expansion and isotype class-switching to IgE in B cells, which will further differentiate into either memory B cells or PCs. Allergic reactions are then triggered upon cross-linking of IgE-FcɛRI complexes on basophils and mast cells, leading to cell degranulation and the release of pro-inflammatory mediators.Mechanisms underlying effective allergen-specific immunotherapy (AIT) involve the induction of Tregs and the secretion of blocking IgG4 antibodies, which together mediate the onset and maintenance of immune tolerance towards non-hazardous environmental antigens. However, the importance of regulatory B cells (Breg) for tolerance induction during AIT has gained more attention lately. Studies in grass pollen- and house dust mite-allergic patients undergoing SCIT reported increased frequencies of IL-10+ Breg cells and a positive correlation between their number and the improvement of clinical symptoms. Thus, Breg are emerging as biomarkers for monitoring tolerance to allergens under natural exposure conditions and during AIT. Further research on the role of other anti-inflammatory cytokines secreted by Breg will help to understand their role in disease development and tolerance induction.


Asunto(s)
Desensibilización Inmunológica , Hipersensibilidad , Alérgenos , Linfocitos B , Humanos , Hipersensibilidad/terapia , Tolerancia Inmunológica
5.
Front Allergy ; 2: 680937, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35386993

RESUMEN

Seasonal exposure to birch pollen (BP) is a major cause of pollinosis. The specific role of Toll-like receptor 4 (TLR4) in BP-induced allergic inflammation and the identification of key factors in birch pollen extracts (BPE) initiating this process remain to be explored. This study aimed to examine (i) the importance of TLR4 for dendritic cell (DC) activation by BPE, (ii) the extent of the contribution of BPE-derived lipopolysaccharide (LPS) and other potential TLR4 adjuvant(s) in BPE, and (iii) the relevance of the TLR4-dependent activation of BPE-stimulated DCs in the initiation of an adaptive immune response. In vitro, activation of murine bone marrow-derived DCs (BMDCs) and human monocyte-derived DCs by BPE or the equivalent LPS (nLPS) was analyzed by flow cytometry. Polymyxin B (PMB), a TLR4 antagonist and TLR4-deficient BMDCs were used to investigate the TLR4 signaling in DC activation. The immunostimulatory activity of BPE was compared to protein-/lipid-depleted BPE-fractions. In co-cultures of BPE-pulsed BMDCs and Bet v 1-specific hybridoma T cells, the influence of the TLR4-dependent DC activation on T cell activation was analyzed. In vivo immunization of IL-4 reporter mice was conducted to study BPE-induced Th2 polarization upon PMB pre-treatment. Murine and human DC activation induced by either BPE or nLPS was inhibited by the TLR4 antagonist or by PMB, and abrogated in TLR4-deficient BMDCs compared to wild-type BMDCs. The lipid-free but not the protein-free fraction showed a reduced capacity to activate the TLR4 signaling and murine DCs. In human DCs, nLPS only partially reproduced the BPE-induced activation intensity. BPE-primed BMDCs efficiently stimulated T cell activation, which was repressed by the TLR4 antagonist or PMB, and the addition of nLPS to Bet v 1 did not reproduce the effect of BPE. In vivo, immunization with BPE induced a significant Th2 polarization, whereas administration of BPE pre-incubated with PMB showed a decreased tendency. These findings suggest that TLR4 is a major pathway by which BPE triggers DC activation that is involved in the initiation of adaptive immune responses. Further characterization of these BP-derived TLR4 adjuvants could provide new candidates for therapeutic strategies targeting specific mechanisms in BP-induced allergic inflammation.

6.
Clin Transl Allergy ; 10: 36, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32884636

RESUMEN

The mechanisms involved in the induction of allergic sensitization by pollen are not fully understood. Within the last few decades, findings from epidemiological and experimental studies support the notion that allergic sensitization is not only dependent on the genetics of the host and environmental factors, but also on intrinsic features of the allergenic source itself. In this review, we summarize the current concepts and newest advances in research focusing on the initial mechanisms inducing pollen sensitization. Pollen allergens are embedded in a complex and heterogeneous matrix composed of a myriad of bioactive molecules that are co-delivered during the allergic sensitization. Surprisingly, several purified allergens were shown to lack inherent sensitizing potential. Thus, growing evidence supports an essential role of pollen-derived components co-delivered with the allergens in the initiation of allergic sensitization. The pollen matrix, which is composed by intrinsic molecules (e.g. proteins, metabolites, lipids, carbohydrates) and extrinsic compounds (e.g. viruses, particles from air pollutants, pollen-linked microbiome), provide a specific context for the allergen and has been proposed as a determinant of Th2 polarization. In addition, the involvement of various pattern recognition receptors (PRRs), secreted alarmins, innate immune cells, and the dependency of DCs in driving pollen-induced Th2 inflammatory processes suggest that allergic sensitization to pollen most likely results from particular combinations of pollen-specific signals rather than from a common determinant of allergenicity. The exact identification and characterization of such pollen-derived Th2-polarizing molecules should provide mechanistic insights into Th2 polarization and pave the way for novel preventive and therapeutic strategies against pollen allergies.

7.
Sci Rep ; 9(1): 1852, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30755657

RESUMEN

Para-Phenylenediamine (PPD) is an aromatic amine used in hair dyes and in temporary black henna tattoos, which is a frequent cause of allergic contact dermatitis (ACD). ACD is a skin inflammatory reaction characterized by modifications such as spongiosis, exocytosis and acanthosis. The aim of this study is to characterize the expression and the role of IL-20-related cytokines, including IL-19, IL-20, IL-22 and IL-24, in ACD. The expression of IL19, IL20, IL22 and IL24 is increased in affected skin from PPD allergic patients compared with uninvolved skin. In addition, the expression of these cytokines positively correlates with clinical symptoms. To assess their role in ACD, we set up a mouse model of PPD-induced allergic contact dermatitis and we showed that, in contrast to Il22-deficient mice, Il22ra1-, Il20rb- and Il24-deficient mice are partially protected against development of PPD-induced contact hypersensitivity. These mice have decreased ear thickening and less acanthosis compared with WT mice after PPD treatment. In addition, the absence of IL-22R, IL-20R2 or IL-24 affects the recruitment of neutrophils into the skin but not the total IgE production. Taken together, these results demonstrate the implication of IL-24 via the IL-20R type II receptor in the inflammatory process of ACD.


Asunto(s)
Citocinas/metabolismo , Dermatitis Alérgica por Contacto/metabolismo , Inflamación/inducido químicamente , Interleucinas/metabolismo , Piel/efectos de los fármacos , Adulto , Anciano , Animales , Biopsia , Colorantes , Modelos Animales de Enfermedad , Humanos , Inmunoglobulina E/metabolismo , Inflamación/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Persona de Mediana Edad , Fenilendiaminas , Receptores de Interleucina/metabolismo , Piel/metabolismo , Interleucina-22
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...